<u>TSS/VetEquip, Inc. Project NCO070NPNA-01:</u> Airflow Performance Testing of the COMPAC⁵ Report 25 November 2007 Page 1 of 24

Airflow Performance Testing of the COMPAC⁵

Report 25 November 2007

The final review and approval of this document before its release to the client is the responsibility of the following person at Technical Safety Services. In signing this cover-sheet, he acknowledges the accuracy of the data and activities reported herein:

Martin Burke _____ Field Engineering Manager

Monta Alate: 11/26/07

Airflow Performance and Tracer Gas Containment Test Report

- 1 Title: Airflow Performance Testing of the COMPAC⁵
- 2 Site: TSS, Inc. 620 Hearst Avenue Berkeley, CA 94710
- 3 Contacts: Marie Carretta Office Manager VetEquip, Inc. 7070 Commerce Circle Pleasanton, CA 94588 1.925.463.1828

Martin Burke Engineering Manager TSS, Inc. 1.800.877.7742

4 Purpose:

The purpose of this report is to document the results of special air flow performance tests conducted by TSS, Inc. upon a VetEquip, Inc. COMPAC⁵ anesthesia station. These tests were designed to collect data so that VetEquip, Inc. personnel could evaluate the basic suitability of the COMPAC⁵ as a containment device for anesthetic gasses used in conjunction with surgical procedures for small animals; the COMPAC⁵ is designed to contain these gasses in a manner that protect the worker.

- 5 Summary:
 - 5.1 Technicians from Technical Safety Services [TSS] performed tests on the COMPAC⁵ between August 21, 2007 and October 25, 2007.
 - 5.2 The basic test results follow:
 - 5.2.1 The COMPAC⁵ was tested with static pressures in the range of -0.10"wc to -2.00"wc (25cfm to 108cfm, respectively). At all of these flow settings, the intake grille competently captured still air along the full length of the sliding doors.
 - 5.2.2 When injecting ~3.0 lpm tracer gas in a manner derivative of ASHRAE 110-1995, with the (human) manikin at a simulated, optimal viewing position, the maximum leakage was ~0.03 ppm in the manikin breathing zone. There is no stated acceptance criterion for this tracer result, however any result <0.10ppm is typically very acceptable.
 - 5.2.3 Sound levels measured within the animal chambers suggest a Noise Rating of NR58 when operating the COMPAC⁵ at -0.25"wc.

- 5.3 The scope of testing was limited to the following items:
 - 5.3.1 TSS tested the airflow volume as a function of static pressure (vacuum) in the range indicated on the pressure gauge supplied with the COMPAC⁵ test article supplied to TSS: 0-2"wc.
 - 5.3.2 In the manner of TSS SOP 4-6 "Field Testing of Slot Hoods," TSS measured the capture velocity and verified that the effective distance of capture from the COMPAC⁵' grille extended to the forward edge of the sliding, access doors.
 - 5.3.3 At several different exhaust air flow rates, TSS injected tracer gas into the COMPAC⁵ at 3 liters per minute: one liter per minute into each of the three chambers. TSS then sampled for leakage in the breathing zone of a second, human manikin, positioned above the COMPAC⁵ to simulate an optimum viewing position.
 - 5.3.4 TSS measured the noise levels in the COMPAC⁵ at different exhaust air flow rates.
- 5.4 All testing was performed in TSS' laboratory at sea level and the air density was within 2% of 1.00 at all times during these tests. No adjustment for air density was required or made.
- 5.5 Test results are discussed in greater detail in section 6 of this report. Cited tables and diagrams are in section 7 of this report. Deviations are cited in Section 8, and Section 9 contains pertinent additional documents used to support the validity of this report.

6 <u>Test Results:</u>

- 6.1 Airflow Volume versus Static Pressure (Vacuum):
 - 6.1.1 Test Method:

TSS placed a 3" diameter, low-resistance flow element on the back of the COMPAC⁵ to provide a steady reading for flow through the duct. We measured the airflow in cfm at the center point of 4" duct using a calibrated anemometer, applying an A(k) factor of 0.91 to accommodate the single-point readings. While measuring the air flow, simultaneous vacuum readings were made directly at the outlet collar.

6.1.2 Acceptance Criteria:

There are no formal acceptance criteria applied to this test.

6.1.3 Test Results:

The duct flow and pressure data is presented in Table 1 and plotted Diagram 1.

- 6.2 Field Testing as a Slot Hood
 - 6.2.1 Test Method:

In the manner of TSS SOP 4-6, TSS placed an anemometer probe in the (~1.75" x 12" = 0.15 ft^2) grille entry plane and measured the air velocity at four points along the grille at the same test-pressures used to establish the flow-pressure curve. Simultaneously, we probed at the far end of the access doors with neutral-density smoke to visualize the airflow capture performance.

6.2.2 Acceptance Criteria:

There are no formal criteria applied to this test, but it is presumed that the smoke capture distance extend to the limit of the doors.

- 6.2.3 Test Results:
 - 6.2.3.1 At each of the six (6) test pressures, the smoke was thoroughly captured.
 - 6.2.3.2 Because the same six test pressures were used, the average "face" velocities can be used as a simple, field verification of the COMPAC⁵ performance. In this case, and average velocity of >=181 feet per minute at the grill corresponded to a minimally-passing test result.
 - 6.2.3.3 The field data is restated on Table 2 of this report.

- 6.3 Tracer Gas Performance Tests:
 - 6.3.1 Test Method:

With the COMPAC⁵ operating normally and providing the flow conditions similar to those described in the previous section, and in a manner derivative of ASHRAE 110-1995, TSS injected Sulfur Hexafluoride tracer gas into the COMPAC⁵ so that it would be distributed evenly through each of the three chambers. TSS then sampled for leakage in the breathing zone of a second, human manikin, positioned about 25" above the base of the COMPAC⁵ and 6" back.

The flow rate of 3 liters/min was selected as the recommended maximum flow for the COMPAC⁵.

With the tracer gas flowing at a nominal 3 liters/min, TSS continuously sampled air from the human manikin-breathing zone for five minutes. TSS used a calibrated Thermo Electron SapphIRe 205B with an inherent sensitivity (LOD) of <=0.007 ppm for the Sulfur Hexafluoride tracer gas. The form of the data from this instrument was logged, 1-second readings stored in an Excel file, available for audit at TSS. After the five minutes, the average concentration of tracer is calculated. With the gas still flowing, all the doors are opened and closed three times over another five minute period and the peak concentration during the "door opening" test is recorded.

TSS repeated this test at each of the six (6) test-pressures.

6.3.2 Acceptance Criteria:

There are no formal criteria applied to this test. As a means of comparison, an average, 5-minute exposure of <=0.10 ppm is typically tolerated in other ventilated enclosures.

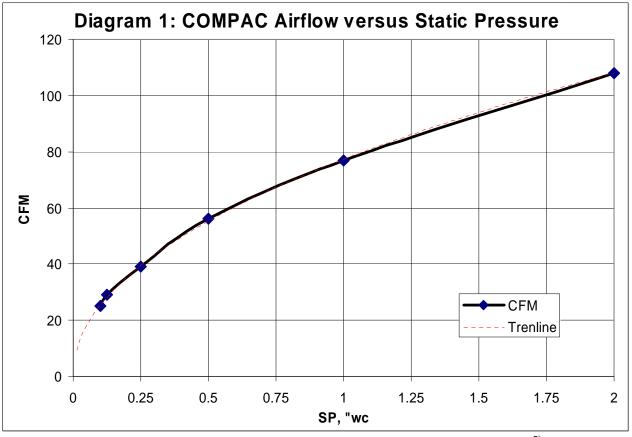
- 6.3.3 Test Results:
 - 6.3.3.1 The COMPAC⁵ contained the tracer gas at a level below 0.10 ppm at all six test-pressures.
 - 6.3.3.2 As the magnitude of the test-pressure was reduced, the captureeffectiveness of the COMPAC⁵ was also reduced. At the lowest test-pressure used by TSS, -0.10" wc, the COMPAC⁵ had an average leakage of 0.03 ppm. However, at such low magnitudes, the "door opening" test reveals that some tracer gas can escape when the doors are opened and closed.
 - 6.3.3.3 The data is plotted as Diagram 2-8 and summarized in Table 3.

6.4 Noise Levels in the COMPAC⁵:

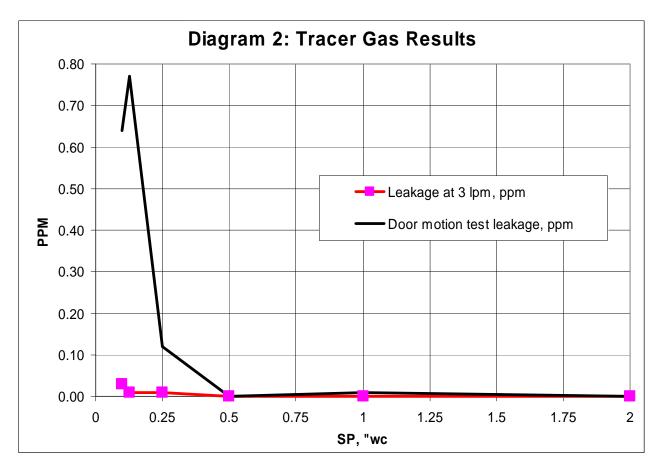
6.4.1 Test Method:

TSS used a calibrated, Type-1 microphone and octave band analyzer to measure and record the sound levels in the COMPAC⁵ chambers at three of the test-pressures: -1.00" wc, -0.50" wc, and -0.25" wc.

6.4.2 Acceptance Criteria:


There are no formal criteria applied to this test.

- 6.4.3 Test Results:
 - 6.4.3.1 As the magnitude of the static pressure increases, so does the air velocity through the grille, resulting in greater noise in the chambers.
 - 6.4.3.2 At -0.25" wc, the *Noise Rating* [NR] of the COMPAC⁵ is approximately NR58. That is, the peak reading at -0.25" wc (at 250 Hz) matches NR58 on the ISO Noise Rating Curves.
 - 6.4.3.3 The data is plotted as Diagram 9 and summarized in Table 4.


7 Diagrams and Tables:

Item	Description
Diagram 1	Airflow vs. Static Pressure
Diagram 2	Tracer Gas Test Results
Diagram 3	Tracer Gas Test Plot: -2.00" wc Static Pressure
Diagram 4	Tracer Gas Test Plot: -1.00" wc Static Pressure
Diagram 5	Tracer Gas Test Plot: -0.50" wc Static Pressure
Diagram 6	Tracer Gas Test Plot: -0.25" wc Static Pressure
Diagram 7	Tracer Gas Test Plot: -0.125" wc Static Pressure
Diagram 8	Tracer Gas Test Plot: -0.10" wc Static Pressure
Diagram 9	Noise in Chamber vs. Static Pressure
Table 1	Airflow vs. Static Pressure
Table 2	Airflow Velocity at Grille vs. Static Pressure
Table 3	Tracer Test Results vs. Static Pressure
Table 4	Noise in Chamber vs. Static Pressure

<u>TSS/VetEquip, Inc. Project NCO070NPNA-01:</u> Airflow Performance Testing of the COMPAC⁵ Report 25 November 2007 Page 9 of 24

(SP = static pressure, or vacuum at the outlet collar of the $COMPAC^{5}$)

(The data suggests that the COMPAC5 begins to lose its ability to capture below 0.125"wc. At no time during our tests did the average Leakage (red trace above) exceed 0.10ppm)

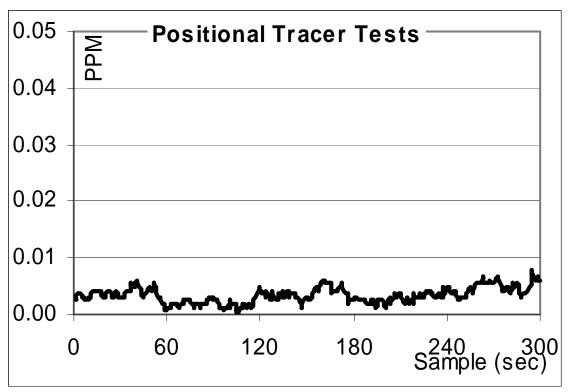


Diagram 3: Tracer Gas Test Plot: -2.00" wc Static Pressure

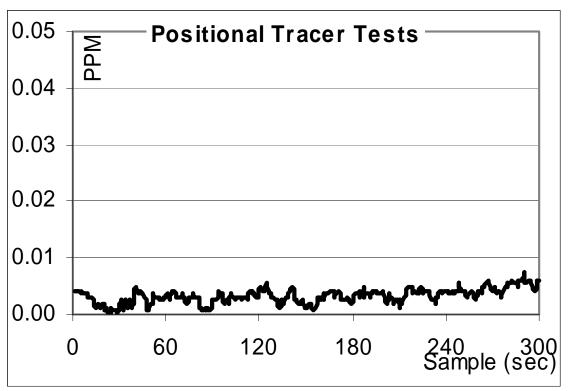


Diagram 4: Tracer Gas Test Plot: -1.00" wc Static Pressure

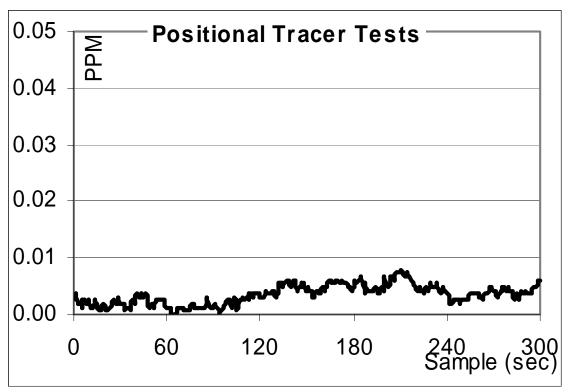


Diagram 5: Tracer Gas Test Plot: -0.50" wc Static Pressure

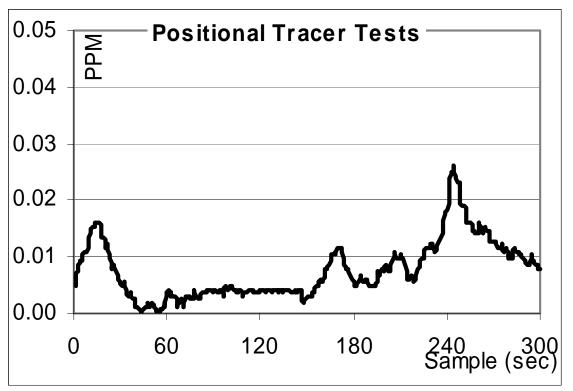


Diagram 6: Tracer Gas Test Plot: -0.25" wc Static Pressure

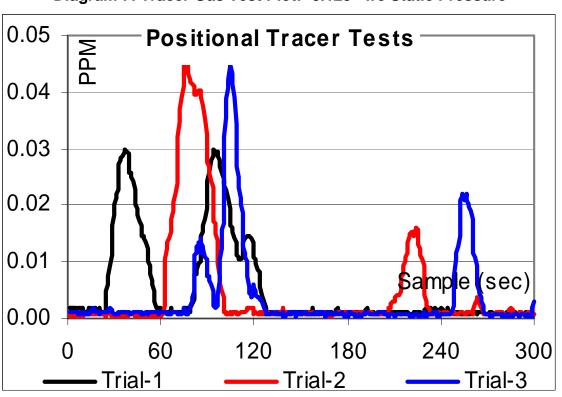


Diagram 7: Tracer Gas Test Plot: -0.125" wc Static Pressure

⁽Three replicates were done at this pressure, where the captureability of the COMPAC5 is just beginning to break down)

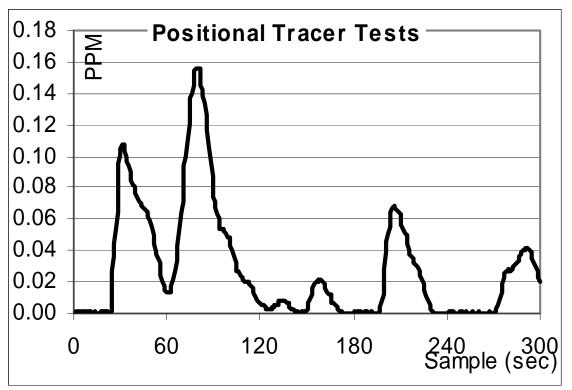
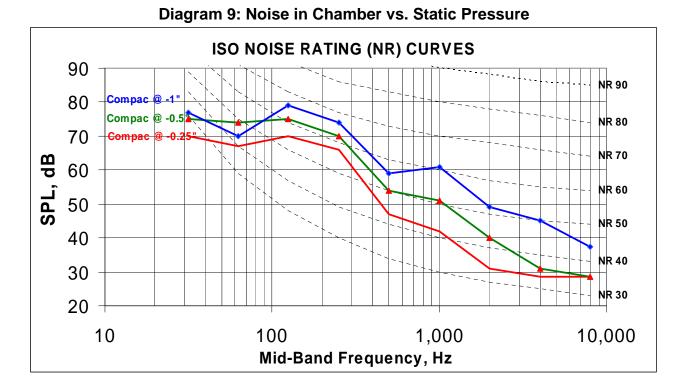



Diagram 8: Tracer Gas Test Plot: -0.10" wc Static Pressure

<u>TSS/VetEquip, Inc. Project NCO070NPNA-01:</u> Airflow Performance Testing of the COMPAC⁵ Report 25 November 2007 Page 17 of 24

<u>TSS/VetEquip, Inc. Project NCO070NPNA-01:</u> Airflow Performance Testing of the COMPAC⁵ Report 25 November 2007 Page 18 of 24

TABLE I. CONTA	55 AILIN		us Stati	C FIE33	uie	
Static Pressure, "wc	2	1	0.5	0.25	0.125	0.1
Duct Velocity, fpm	2420	1730	1260	870	650	560
Duct Diameter, in.	3	3	3	3	3	3
Corr. Factor	0.91	0.91	0.91	0.91	0.91	0.91
Volume, cfm	108	77	56	39	29	25

TABLE 1: COMPAC5 Airflow versus Static Pressure

TABLE 2: COMPAC5 Airflow Velocity at Grille versus Static Pressure

Static Pressure, "wc	2	1	0.5	0.25	0.125	0.1
Vel-A	695	482	386	263	202	176
Vel-B	695	484	373	274	215	192
Vel-C	710	515	382	270	226	187
Vel-D	720	525	367	271	203	168
Avg. Vel.	705	502	377	270	212	181
Small-Volume Smoke Test	Pass	Pass	Pass	Pass	Pass	Pass

TABLE 3: COMPAC5 Tracer Gas Results versus Static Pressure

Static Pressure, "wc	2	1	0.5	0.25	0.125	0.1
Leakage at 3 lpm, ppm	0.00	0.00	0.00	0.01	0.01	0.03
Door motion test leakage, ppm	0.00	0.01	0.00	0.12	0.77	0.64

TABLE 4: Noise in Chamber vs. Static Pressure

			D	ecibels at	Mid-Band	l Frequen	су			Weig	ghted
Site ID	31.5	62.5	125	250	500	1000	2000	4000	8000	dB-A	dB-C
Fan off	54	53	47	38	35	33	30	28.5	28.5	41	58
Compac @ -0.25"	70	67	70	66	47	42	31	28.5	28.5	58	74
Compac @ -0.5"	75	74	75	70	54	51	40	31	28.5	61	76
Compac @ -1"	77	70	79	74	59	61	49	45	37.5	67	83
Room @ -0.25"	67	64	63	50	46	39	33	29	28.5	50	68
Room @ -0.5"	67	63	63	52	48	41	38	30	28.5	51	69
Room @ -1"	67	63	64	52	51	48	47	43	34	55	68

8 Discrepancies and Alterations:

The following is a list of known discrepancies and alterations made with regard to this project. The changes made after the date of testing were corrections of errors in the recorded field data.

8.1 The only attestable deviation from TSS' normal, field documentation practices was the automatic recording of data to an Excel spreadsheet. TSS anticipates no diminution in the data integrity as a consequence of this change.

9 <u>Pertinent Additional Documentation:</u>

The following pages contain photocopies of documents pertinent to this report. Calibration certificates are archived at the main office of Technical Safety Services.

20-24

Description Pages

Calibration Certificates

<u>TSS/VetEquip, Inc. Project NCO070NPNA-01:</u> Airflow Performance Testing of the COMPAC⁵ Report 25 November 2007 Page 20 of 24

Page 1 of 2

EQ 901 NC071372

Certificate of Calibration

	Certificate	No: 1052781J4080005		
Submitted By:	TECHNICAL SAFETY SERVICES			
	620 HEARST AVE.			
	BERKELEY, CA 94710			
Serial Number:	J4080005	Date Received:	4/10/2007	
Customer ID:		Date Issued:	4/14/2007	
Model:	CA-22 CALIBRATOR	Valid Until:	4/14/2008	
Test Conditions:		Model Condition	s:	
Temperature:	18°C to 29°C	As Found:	IN TOLERAN	JCE
Humidity:	20% to 80%	As Left:	IN TOLERAN	ICE
Barometric Pressur	re: 890 mbar to 1050 mbar			
SubAssemblies:				
Description:		Serial Number:		
Calibration Procedua	re:58V937			
Reference Standard(5):			
I.D. Number ET0000523 S00335 T00230 Measurement Uncert	Device B&K / QUEST ENSEMBLE FLUKE PM6666 FLUKE 45 MULTIMETER cainty:	Last Calibration 6/15/2006 7/21/2005 3/20/2006	Date Calib 6/15/2007 7/21/2007 3/20/2008	APPROVED FOR CLIENT USE
+/- 2.6% ACOUSTIC (0.22 Estimated at 95% Confid	DB)+/- 1.4% VAC +/- 0.001% HZ ence Level (k=2)			APR 2 3 2007
Calibrated By:	DARREN BALL Se	ervice Technician	4/14/2007	BY: <u>Ole</u> FOR TSS, INC. www.techsafety.com
Reviewed/Approved	By: Lau . Just Technical Manager/Deput	y	4/14/2007	
This report certifies t under equipment above.	hat all calibration equipment used in t This report must not be reproduced exc	the test is traceable to the test is entirety with	NIST, and appl nout the writte	ies only to the unit identified n approval of Quest Technologies.

TECHNOLOGIES, INC. 1060 Corporate Center Drive • Oconomowoc, Wisconsin 53066-4828 800-245-0779 • 262-567-9157 • Fax 262-567-4047 • Internet Address. http://quest-technologies.com

098-393 Rev. B

<u>TSS/VetEquip, Inc. Project NCO070NPNA-01:</u> Airflow Performance Testing of the COMPAC⁵ Report 25 November 2007 Page 21 of 24

TECHNICAL SAFE	TY SERVICES, INC.	Page 1 of 1	BY: FOR TSS, IN www.techsatety.com		
<u> </u>	INSTRUMENT	CALIBRATION			
FACILITY	Technical Safety Services, Inc	DB ID NO.	EQ 43	TSS Cal Event	NC072712
ADDRESS	620 Hearst Avenue	MFGR.	Setra		1100 10/12
CITY, STATE	Berkeley, California	MODEL	339-1		
ZIP	94710	ТҮРЕ	Pressure Ind	dicator	
DEPARTMENT	Calibration	S/N	182188		
CONTACT	Dick Capell	BLDG.	620 Hearst /	Avenue	
PHONE	1.510.845.5591	RM.	Calibration L	aboratory	

AS FOUND STATUS:	REASON FOR SERVICE:	FINAL TEST S	TATUS:0-1.0" - 7/30/07
IN TOLERANCE	🛛 SCHEDULED	CALIBRATED	M LIMITED CAL
X OUT OF TOLERANCE		X OUT OF TOLERANCE	0.0- Drive ONly
			Re

UNITS MEASUR	ED AND		AS FOUND T	EST DATA:	<u> </u>	FINAL TEST DATA:				
TEST POIN	TS:	STANDARD	INSTRUMENT	TOL. (+/-)	IN TOL.?	STANDARD	INSTRUMENT	TOL. (+/-)	IN TOL.? (Y/N)	
0.00	″wc	0.0000	0.0000	0.002	Y	0.0000	0.0000	0.002	Y	
0.125	"wc	0.1240	0.1247	0.002	Y	0.1240	0.1247	0.002	Y	
0.25	"wc	0.2500	0.2508	0.002	Y	0.2500	0.2508	0.002	Y	
0.50	"wc	0.4965	0.4972	0.002	Y	0.4965	0.4972	0.002	Y	
1.00	"wc	0.9982	1.0001	0.002	Y	0.9982	1.0001	0.002	Y	
2.00	"wc	1.9926	1.9969	0.002	N	1.9926	1.9969	0.002	N	

NIST TRACEABLE STANDARDS USED	SERIAL/ID NUMBER	STD. CAL. DATE	CAL. DUE DATE
Heise PTE-1	TSS EQ 1187	1/8/07	1/8/08
Heise HQS-1	TSS EQ 930	2/16/07	8/16/07
Barometric Pressure (29.97"Hg)	TSS EQ 1409	09/26/06	09/26/07
Temp/rH (21C / 54%rH)	TSS EQ 362	04/09/07	04/09/08

COMMENTS: TUR > = 4:1

CALIBRATED BY (PRINT)	CALIBRATED BY (SIGN)	CALIBRATION DATE	CAL. DUE DATE
Richard Capell	Buhun Hagel	7/30/2007	7/30/200

ICR-1.3.For DC for Setra Ind..doc

<u>TSS/VetEquip, Inc. Project NCO070NPNA-01:</u> Airflow Performance Testing of the COMPAC⁵ Report 25 November 2007 Page 22 of 24

Facility		Technical Safety	Services, Inc		Event	#	NC073194				
Address		620 Hearst Aver	nue		TSS DE	a i D	EQ8	iQ8			
City,Stat	e ZIP	Berkeley, CA 94	710		Manufacturer			TSI			
Departm	ient	Calibration			Model		8355				
Contact		Brian Harringtor	 ו		Туре		Anemometer				
Phone		(510) 845-5591			Seriai	Number	403007				
Building	/Rm.	620 / Calibration	n Lab				[
Cal	ibrated By	(Print)	Calibr	ated By (Sign)		Calibratio	n Date	Calibration Due	Date		
Brian Harrington				A A	18 SEP	2007	1	8 SEP 2008			
	As Foun	d Status		Reason For Serv	ice	1	Final T	est Status			
🛛 In Tol			🖾 Sch	eduled		🛛 Calib	prated	Calibrated (L	imited)		
Out C	of Tolerance	2	🗌 Uns	scheduled		Out Out	of Tolerance				
🗌 Inop	erative		🗌 Oth	er:		🗌 Inope	erative				
Test	Units	T	As Four	nd Test Data		I	Final	Test Data			
Point	Units	Standard	instrum	ent Tolerance(=	E) In Tol.	9 Stan	dard Instrum	ent Tolerancer±)	; in Toil		
1	FPM	0	0	3	Yes	0	0	3	Yes		
2	FPM	35	35	3	Yes	35 ·	35	3	Yes		
3	FPM	65	65	3	Yes	65	65	3	Yes		
4	FPM	100	101	3	Yes	100	101	3	Yes		
5	FPM	160	161	5	Yes	160	161	5	Yes		
6	FPM	330	331	10	Yes	330	331	10	Yes		
7	FPM	650	645	19	Yes	650	645	19	Yes		
8	FPM	1000	990	30	Yes	1000	990	30	Yes		
9	FPM	1460	1470	44	Yes	1460	1470	44	Yes		
10	FPM	2510	2490	75	Yes	2510	2490	75	Yes		
11	FPM	4520	4520	136	Yas	4520	4520	136	Yes		
12	FPM	8000	8000	240	Yes	8000	8000	240	Yes		
1	٩F	74.07	74.3	0.5	Yes	74.07	74.3	0.5	Yes		
NIS	ST Traceat	ole Standards Us	sed	Serial/TSS ID N	umber	Calit	pration Date	Calibration D	ue Date		
TSI Certi	fier Wind T	unnel	E	Q209		04 JUN 200		04 DEC 2007			
Thermor	neter			Q366		17 OCT 200		17 OCT 2007			
Baromete	er		E	Q1409		26 SEP 200	6	26 SEP 2007			
				Environm	nental Cond	tions					
Temperat	ture: 23.32	.°C			Pressu	e: 29.898"H	1g				
				c	omments						
	ty TUR≥1:1										
2) Temp		55 OEM Certificat									

人民性心的 化十分分化 计注意数值 计路到

oste **AHC** estadou trada 1993. November 1994 - Santa Angeland

n in the second second

Bios International Calibration Certificate

EQ 1322 NC063930

 Report No.
 52460

 Product
 DCL-H

 Serial No.
 103023

 Cal. Date
 31 October 2006

 Cal due.
 30 October 2007

Technical Safety Services, Inc. 620 Hearst Ave Berkeley CA 94710 Acct. No. TECSAF PO No.

As Received Test Data

Calibration Standards Used

All units tested in accordance with Bios International Corporation test number PR05-2 Rev B or PR01-10 Rev D using high-purity bottled nitrogen.

Asset Number	Description	Cal Date	Due Date		
ML-500-24 100499	ML-500 Medium Flow Ce	ell 11/21/2005	11/21/2006		
ML-500-44 100392	ML-500 High Flow Cell	12/19/2005	12/19/2006		
Technician Jonath Lab. Temperature	an Ramos L 22.2 °C	ab. Pressure 74-	4.19 mmHg		
Instrument	Lab Standard L	ab Standard		Allowable	Condition

Reading (ml/min)	Reading (ml/min)	Unit No.	Deviation	Deviation	Shipped
501	500.75	100499	0.05 %	1.00%	in tolerance
4997	5006	100392	-0.18%	1.00%	in tolerance
29960	30055	100392	-0.32%	1.00%	in tolerance
The allowable deviation co	nsists of the RSS of the expan	nded uncertainties of the v	vorking standards (0.25%)), experimental errors (0.25%), and the error of the device under test

The allowable deviation consists of the HSS of the expanded uncertainties of the working standards (0.25%), experimental errors (0.25%), and the error of t (DUT), which is the remainder of the allowable deviation.

As Shipped Test Data

Calibration Standards Used

All units tested in accordance with Bios International Corporation test number PR05-2 Rev B or PR01-10 Rev D using high-purity bottled nitrogen.

Asset Number	Description	Cal Date	Due Date	
ML-500-44 100392	ML-500 High Flow Cell	12/19/2005	12/19/2006	
ML-500-24 100499	ML-500 Medium Flow Cell	11/21/2005	11/21/2006	

Technician Jonathan Ramos Lab. Pressure 756.56 mmHg

Lab. Temperature 22.2 °C

Instrument Reading (ml/min)	Lab Standard Reading (ml/min)	Lab Standard Unit No.	Deviation	Allowable Deviation	Condition Shipped
502.1	500.45	100499	0.33 %	1.00%	in tolerance
5009	5002.5	100392	0.13 %	1.00%	in tolerance
30090	30085	100392	0.02 %	1.00%	in tolerance
The allowable deviation consists of the RSS of the expanded uncertainties of the working standards (0.25%), experimental errors (0.25%), and the error of the device under test (DUT), which is the remainder of the allowable deviation.					

Each DryCal flow calibrator is dynamically tested by comparing it to a laboratory standard primary piston prover of much higher accuracy (±0.25% or better) but of similar operating principles. Flow generators of ±0.03% stability are used for the comparison. Use of provers of similar construction to the device under test assures the validity of the flow generator as a transfer standard. The primary laboratory standards are qualified by direct measurement of their dimensions (diameter, length of measured path, time base) against NIST traceable gauges and instruments (NIST numbers available upon request). A rigorous analysis of their accuracy in accordance with the International Guide to Uncertainty in Measurements has been performed, assuring their traceable accuracy. Test procedures ensure temperature matching of the laboratory standards and the device under test.

APPROVED FOR CLIENT USE

Bios International Corporation 10 Park Place, Butler, NJ 07405 USA www.biosint.com Printed 31 October 2006 Page 1 of 2 NOV 0 6 2006 BY: <u>Aze</u> FORTSS, INC, www.techsalely.com

CAL02-15 Rev A This report shall not be reproduced except in full, wilthout the written approval of Bios International Corporation. Results only relate to the items calibrated All calibrations performed in accordance with ISO 17025.

<u>TSS/VetEquip, Inc. Project NCO070NPNA-01:</u> Airflow Performance Testing of the COMPAC⁵ Report 25 November 2007 Page 24 of 24

EDINSI

and the second second

The world leader in serving science

adre

SAPPHIRE CALIBRATION VERIFICATION

DATE: 26-Jun-07

TEMP: Ambient PRESSURE: 760 mm Hg

CUSTOMER: Technical Safety Services Inc.

SERIAL #: 205B-79934-435

P#: P706-0898 SET NAME: N2O

APPLIC. CHEMIST : /S

SALES ORDER #: 35246

N2O

Range: 0-5 ppm Wavelength: 4.5 µm Pathlength: Long MDL: 0.1 ppm ***

INJECTION	ACTUAL	INSTRUMENT	% ERROR
VOLUME (µI)	CONCENTRATION (ppm)	READING (ppm)	of READING
5.0	2.2	2.3	2.2
10.0	4.4	4.4	-0.9
20.0	8.9	8.9	0.09

*** Approximate MDL based on noise levels.

APPROVED FOR CLIENT USE

Laurie Faraone

JUL 1 8 2007

BY: <u>Aze</u> FOR TSS, INC. www.techsafety.com

Air Quality Instruments Environmental Instruments Franklin, MA 02038 (508) 520-0430 (508) 520-1460 fax www.thermofisher.com

Thermo Fisher